
Linear-Time Graph Algorithms in GP 2

Linear-Time Graph Algorithms in GP 2

Graham Campbell Brian Courtehoute Detlef Plump

Department of Computer Science
University of York

CALCO, 5 June 2019



Linear-Time Graph Algorithms in GP 2
The Programming Language GP 2

The Programming Language GP 2



Linear-Time Graph Algorithms in GP 2
The Programming Language GP 2

Introduction

The graph programming language GP 2 is
based on graph transformation rules on directed graphs
non-deterministic
computationally complete
equipped with a compiler generating C code

Challenge: creating linear-time programs in graph transformation
languages

General cost of matching the left hand graph L of a rule within a
host graph G:

size(G)size(L)



Linear-Time Graph Algorithms in GP 2
The Programming Language GP 2

Rule Application in GP 2: Transitive Closure

Main = link!
link (a,b,x,y,z:list)

x y z ⇒ x y z
1 2 3 1 2 3

a b a b

where not edge(1,3)

1 2 3

←−
1 2 3

−→
1 2 3

injective
y dangling

condition PO PO

1

2

3

←−

y

1

2

3

−→

y

1

2

3



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Tree Recognition



Linear-Time Graph Algorithms in GP 2
Tree Recognition

The GP 2 Program is-tree

Correctness
The program fails iff the input is not a non-empty tree.

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

not_empty(a,x,y:list) prune(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x
1 1

a

two_nodes(x,y:list) has_loop(a,x:list)
x y ⇒ x y

1 2 1 2

x ⇒ x
1 1a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

not_empty(a,x,y:list)
x ⇒ x
1 1



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

two_nodes(x,y:list)
x y ⇒ x y

1 2 1 2

has_loop(a,x:list)
x ⇒ x
1 1a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

not_empty(a,x,y:list)
x ⇒ x
1 1



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

two_nodes(x,y:list)
x y ⇒ x y

1 2 1 2

has_loop(a,x:list)
x ⇒ x
1 1a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Time Complexity

For an input graph G with n nodes and m edges,
prune! terminates after at most n applications
prune is applied in O(nm) time due to matching
is-tree requires O(n2m) time

Problem: Tree recognition can be done in linear time in general.
Higher cost in graph programming languages due to matching.

Solution: GP 2 features “rooted” nodes such as that can be
accessed in constant time. The C compiler implements them as a
linked list of pointers.

Trade-off: Gain of efficiency but loss of abstraction.



Linear-Time Graph Algorithms in GP 2
Tree Recognition

The GP 2 Program is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

init(x:list)
x ⇒ x
1 1

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x
1 1

a
x y ⇒ x y

1 2 1 2

a a

two_nodes(x,y:list) has_loop(a,x:list)
x y ⇒ x y

1 2 1 2

x ⇒ x
1 1a a

Marked nodes can only match nodes of the same colour. Magenta
denotes the “any” mark wich can match any colour.



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

init(x:list)
x ⇒ x
1 1



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

push(a,x,y:list)
x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

push(a,x,y:list)
x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

prune(a,x,y:list)
x y ⇒ x
1 1

a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

two_nodes(x,y:list)
x y ⇒ x y

1 2 1 2

has_loop(a,x:list)
x ⇒ x
1 1a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

init(x:list)
x ⇒ x
1 1



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

push(a,x,y:list)
x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail

two_nodes(x,y:list)
x y ⇒ x y

1 2 1 2

has_loop(a,x:list)
x ⇒ x
1 1a a



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Execution Examples of is-tree-rooted

Main = init; {prune, push}!; if {two_nodes, has_loop}
then fail



Linear-Time Graph Algorithms in GP 2
Tree Recognition

The Use of Roots

A rule L⇒ R is fast if
Every connected component of L has a root.
Other constraints on labels and conditions apply (omitted).

Theorem (Complexity of Matching Fast Rules, Bak-Plump 2012)

Rooted graph matching can be implemented to run in constant
time for fast rules, provided there are upper bounds on the
maximum node degree and the number of roots in host graphs.



Linear-Time Graph Algorithms in GP 2
Tree Recognition

The Use of Roots

How impactful are these constraints in practice?

Number of roots: up to the programmer to keep it bounded

Maximum node degree: bounded in many practical applications
such as traffic networks or social networks

Roots
increase control in small areas of the graph, but
decrease the simplicity of programs.



Linear-Time Graph Algorithms in GP 2
Tree Recognition

Average Execution Times of is-tree-rooted

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0
0.5

1
1.5

2
2.5

3
3.5

4

Number of nodes in input

Ex
ec

ut
io

n
tim

e
(s

)

Star Graph

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·105

0
5 · 10−2

0.1
0.15
0.2

0.25
0.3

0.35
0.4

Number of nodes in input

Ex
ec

ut
io

n
tim

e
(s

)

Binary Tree
Grid Graph

A Star Graph
A complete binary tree

A grid graph



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Topological Sorting



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Topological Sorting

A topological sorting is a linear order < on the nodes of a graph
with no directed cycles (DAG) such that

for each edge from u to v , u < v .

Idea of the program:
Encoding the topological sorting as a stack of nodes
Using depth-first-search (DFS) for graph traversal
Pushing nodes onto the stack during the back step of a
directed DFS
If the program gets stuck, using an undirected DFS to find an
unsorted node



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Encoding a Topological Sorting

1

2 3

There are two possible topological sortings on this graph:
1 < 2 < 3 and 1 < 3 < 2.

top-sort may output either one of them encoded as a stack:

1

2 3

1

2 3



Linear-Time Graph Algorithms in GP 2
Topological Sorting

The GP 2 Program top-sort

Main = init; SearchUnsortedNodes

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!

init (x:list) unsorted (x:list)
x ⇒ x

1 1

x ⇒ x

1 1

search_forward (a,x,y:list) search_back (a,x,y:list)

x y ⇒ x y

1 2 1 2

where not edge(2,2)

a a
x y ⇒ x y

1 2 1 2

a a

Undirected edges: notation for a non-deterministic call of rule with
edge in either orientation.
Dashed edges: dashing is a mark reserved for edges.



Linear-Time Graph Algorithms in GP 2
Topological Sorting

The Procedure SortNodes

SortNodes = (sort_forward!; try sort_back_push else (try sort_back_stack
else (try red_push else red_stack; break)))!

sort_forward (a,x,y:list) red_stack (x:list)

x y ⇒ x y

1 2 1 2

a a x ⇒ x
0 1 0 1

red_push (x,y:list) sort_back_stack (a,x,y:list)

x

y

⇒

x

y

1 1

0 2 0 2

x y

⇒

x y

1 2 1 2

0 0

a a

sort_back_push (a,x,y,z:list)

x y

z

⇒

x y

z

1 2 1 2

0 3 0 3

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

Main = init; SearchUnsortedNodes
init (x:list)

x ⇒ x

1 1



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!
unsorted (x:list)

x ⇒ x

1 1



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!
sort_forward (a,x,y:list)

x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!
sort_back_stack (a,x,y:list)

x y

⇒

x y

1 2 1 2

0 0

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!
sort_back_push (a,x,y,z:list)

x y

z

⇒

x y

z

1 2 1 2

0 3 0 3

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!
sort_forward (a,x,y:list)

x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!
sort_back_push (a,x,y,z:list)

x y

z

⇒

x y

z

1 2 1 2

0 3 0 3

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!
red_push (x,y:list)

x

y

⇒

x

y

1 1

0 2 0 2



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SortNodes = (sort_forward!; try sort_back_push else
(try sort_back_stack else (try red_push else
red_stack; break)))!



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!
search_forward (a,x,y:list)

x y ⇒ x y

1 2 1 2
where not edge(2,2)

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!
search_back (a,x,y:list)

x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!
search_forward (a,x,y:list)

x y ⇒ x y

1 2 1 2
where not edge(2,2)

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!
unsorted (x:list)

x ⇒ x

1 1



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!
search_back (a,x,y:list)

x y ⇒ x y

1 2 1 2

a a



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Execution Example of top-sort

SearchUnsortedNodes = ((try unsorted then SortNodes;
search_forward)!; try search_back else break)!



Linear-Time Graph Algorithms in GP 2
Topological Sorting

Performance of top-sort

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of nodes in input

Ex
ec

ut
io

n
tim

e
(s

)

A 3x3x3 grid chain graph



Linear-Time Graph Algorithms in GP 2
Conclusion

Conclusion



Linear-Time Graph Algorithms in GP 2
Conclusion

Conclusion

Rooted rules permit linear-time implementations of tree recognition
and topological sorting in GP 2 for inputs of bounded degree.

Future work:
Investigating how the implementation of data structures as
part of the host graph can be used to implement more
linear-time algorithms in GP 2.
Finding a way to automate the refinement of unrooted
programs by adding root nodes in order to speed up matching.
Finding a way to implement linear-time algorithms for inputs
of unbounded degree by modifying GP 2 and its
implementation.


	The Programming Language GP2
	Tree Recognition
	Topological Sorting
	Conclusion

