
Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Rule-Based Graph Programming:
Linear-Time Graph Algorithms in GP 2

Graham Campbell Brian Courtehoute Detlef Plump

Department of Computer Science
University of York

BCTCS, April 2019



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

GP2

Introduction

The graph programming language GP 2 is

a high-level language

rule-based for easier reasoning

non-deterministic

computationally complete

equipped with a compiler generating efficient C code



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

GP2

Rule Application in GP 2

a rule (x,y,z:list)

x y z ⇒ x z

1 2 1 2

uniqueness of output guaranteed by this double-pushout structure:

x y z

1 0 2

injective
�
�A
A

y
1 0

2



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

GP2

Rule Application in GP 2

a rule (x,y,z:list)

x y z ⇒ x z

1 2 1 2

uniqueness of output guaranteed by this double-pushout structure:

x y z

1 0 2

injective
�
�A
A

y dangling

condition

10

2



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

GP2

Rule Application in GP 2

a rule (x,y,z:list)

x y z ⇒ x z

1 2 1 2

uniqueness of output guaranteed by this double-pushout structure:

x y z

1 0 2

←− x z

1 2

−→ x z

1 2

injective
y dangling

condition

1

0

2 ←−

y

1 2

−→

y

1 2



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

The GP 2 Program is-tree

Proposition (Correctness)

The program fails iff the input is not a non-empty tree.

Main = not empty; prune!; if Check then fail

Check = {two nodes, has loop}

not empty(a,x,y:list) prune(a,x,y:list)

x ⇒ x

1 1

x y ⇒ x

1 1

a

two nodes(x,y:list) has loop(a,x:list)

x y ⇒ x y

1 2 1 2

x ⇒ x

1 1a a



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

Execution Examples of is-tree

⇒
prune

⇒
prune

⇒
prune

⇒
prune

⇒
prune

⇒
prune

⇒ fail

Main = not empty; prune!; if Check then fail

Check = {two nodes, has loop}

not empty(a,x,y:list)

x ⇒ x

1 1

prune(a,x,y:list) two nodes(x,y:list) has loop(a,x:list)

x y ⇒ x

1 1

a
x y ⇒ x y

1 2 1 2

x ⇒ x

1 1a a



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

Time Complexity

For an input graph G with n nodes,

prune! terminates after at most n applications

prune is applied in O(n) time due to matching

is-tree requires O(n2) time

Solution: GP 2 features “rooted” nodes such as

A rooted node can be accessed in constant time.



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

The GP 2 Program is-tree-rooted

Main = init; Reduce!; if Check then fail

Reduce = {prune, push}
Check = {two nodes, has loop}

init(x:list) Pink denotes the “any” mark.

x ⇒ x

1 1

It can match any colour.

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x

1 1

a
x y ⇒ x y

1 2 1 2

a a

two nodes(x,y:list) has loop(a,x:list)

x y ⇒ x y

1 2 1 2

x ⇒ x

1 1a a



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

Execution Examples of is-tree-rooted

⇒
init

⇒2

prune
⇒2

push
⇒2

prune

⇒
init

⇒
prune

⇒2

push
⇒

prune
⇒ fail

Main = init; {prune, push}!; if {two nodes, has loop} then fail

init(x:list) prune(a,x,y:list) push(a,x,y:list)

x ⇒ x

1 1

x y ⇒ x

1 1

a
x y ⇒ x y

1 2 1 2

a a



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

Complexity

A rule L⇒ R with condition c is fast if

Every component of L has a root.

Neither L nor R contain repeated list, atom or string variables.

The condition c contains neither the edge predicate, nor a
test e1=e2 or e1!=e2 where both e1 and e2 contain a list,
string or atom variable.

Theorem (Complexity of Matching Fast Rules, Bak-Plump 2012)

Rooted graph matching can be implemented to run in constant
time for fast rules, provided there are upper bounds on the
maximal node degree and the number of roots in host graphs.



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Non-Empty Tree Recognition

Performance of is-tree-rooted

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes in input

E
xe

cu
ti

on
ti

m
e

(s
)

Binary Tree
Grid Graph

A complete binary tree

A grid graph



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Topological Sorting

Topological Sorting

A topological sorting is a linear order ≤ (antisymmetric, transitive,
connex binary relation) such that for each edge from u to v , u ≤ v .

Idea of the program:

Encoding the topological sorting as a stack of nodes

Using depth-first-search (DFS) for graph traversal

Pushing nodes onto the stack during the back step of a
directed DFS

If the program gets stuck, using an undirected DFS to find an
unsorted node



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Topological Sorting

The GP 2 Program top-sort

Main = init; SearchUnsortedNodes

SearchUnsortedNodes = ((try unsorted then SortNodes;

search forward)!; try search back else break)!

init (x:list) unsorted (x:list)

x ⇒ x

1 1

x ⇒ x

1 1

search forward (a,x,y:list) search back (a,x,y:list)

x y ⇒ x y

1 2 1 2

where not edge(2,2)

a a
x y ⇒ x y

1 2 1 2

a a



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Topological Sorting

The Procedure SortNodes

SortNodes = (sort forward!; try sort back push else (try sort back stack

else (try red push else red stack; break)))!

sort forward (a,x,y:list) red stack (x:list)

x y ⇒ x y

1 2 1 2

a a x ⇒ x

0 1 0 1

red push (x,y:list) sort back stack (a,x,y:list)

x

y

⇒

x

y

1 1

0 2 0 2

x y

⇒

x y

1 2 1 2

0 0

a a

sort back push (a,x,y,z:list)

x y

z

⇒

x y

z

1 2 1 2

0 3 0 3

a a



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Topological Sorting

Example Execution of top-sort

⇒ ⇒∗ ⇒ ⇒ ⇒∗

⇓

∗⇐∗⇐∗⇐∗⇐⇐



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Topological Sorting

Correctness and Complexity

Proposition (Correctness)

Given a connected graph with grey nodes and no directed cycles
G , top-sort outputs G with all nodes marked blue and with
additional blue edges that define a topological sorting of G .
Furthermore, there’s an additional green node, an additional green
edge, and a red loop on each node.

Proposition (Complexity)

Given a connected graph with grey nodes and no directed cycles
G , top-sort terminates in linear time.



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

Topological Sorting

Performance of top-sort

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of nodes in input

E
xe

cu
ti

on
ti

m
e

(s
)

A grid chain graph



Rule-Based Graph Programming: Linear-Time Graph Algorithms in GP 2

GP2

Conclusion

Rooted rules permit linear-time implementations of tree recognition
and topological sorting in GP 2 for inputs of bounded degree.

Future work:

Finding a way to implement linear-time algorithms for inputs
of unbounded degree by modifying GP 2 and its
implementation.

Investigating how the implementation of data structures as
part of the host graph can be used to implement more
linear-time algorithms in GP 2.


	GP2
	Non-Empty Tree Recognition
	Topological Sorting
	GP2

